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 Differentiation Rules

 1. Constant: 
d

dx
 c � 0 2. Constant Multiple: 

d

dx
 cf (x) � c f 9(x)

 3. Sum: 
d

dx
 ff(x) � g(x)g � f 9(x) � g9(x) 4. Product: 

d

dx
 f (x)g(x) � f (x)g9(x) � g(x) f 9(x)

 5. Quotient: 
d

dx
 
f(x)

g(x)
�

g(x)f 9(x) 2 f(x)g9(x)

fg(x)g2  6. Chain: 
d

dx
  f (g(x)) � f 9(g(x))g9(x)

 7. Power: 
d

dx
 xn � nxn21 8. Power: 

d

dx
 fg(x)gn � nfg(x)gn21g9(x)

 Derivatives of Functions

Trigonometric:

 9. 
d

dx
 sin x � cos x 10. 

d

dx
 cos x � �sin x 11.

d

dx
 tan x � sec2 x 

 12.  
d

dx
 cot x � �csc2 x 13.

d

dx
 sec x � sec x tan x 14. 

d

dx
 csc x � �csc x cot x

Inverse trigonometric:

 15. 
d

dx
 sin�1 x �

1

"1 2 x2
 16. 

d

dx
 cos�1 x � �

1

"1 2 x2
 17. 

d

dx
 tan�1 x �

1

1 � x2

 18. 
d

dx
 cot�1 x � �

1

1 � x2 19.  
d

dx
 sec�1 x �

1

ZxZ"x2 2 1
 20. 

d

dx
 csc�1 x � �

1

ZxZ"x2 2 1

Hyperbolic:

 21.
d

dx
 sinh x � cosh x 22. 

d

dx
 cosh x � sinh x 23. 

d

dx
 tanh x � sech2 x

 24. 
d

dx
 coth x � �csch2 x 25. 

d

dx
 sech x � �sech x tanh x 26. 

d

dx
 csch x � �csch x coth x

Inverse hyperbolic:

 27. 
d

dx
 sinh�1 x �

1

"x2 � 1
 28. 

d

dx
 cosh�1 x �

1

"x2 2 1
 29. 

d

dx
 tanh�1 x �

1

1 2 x2, ZxZ , 1

 30. 
d

dx
 coth�1 x �

1

1 2 x2, ZxZ . 1 31. 
d

dx
 sech�1 x � �

1

x"1 2 x2
 32. 

d

dx
 csch�1 x � �

1

ZxZ"x2 � 1

Exponential:

 33.
d

dx
 ex � ex 34. 

d

dx
 bx � bx(ln b)

Logarithmic:

 35. 
d

dx
 lnZxZ �

1
x

 36. 
d

dx
 logb x �

1

x(ln b)

Of an integral:

 37.  
d

dx#
x

a

g(t) dt � g(x) 38. 
d

dx#
b

a

g(x, t) dt � #
b

a

0
0x

 g(x, t) dt



 Integration Formulas

 1. #un
 du �

un�1

n � 1
� C, n 2 �1 2. #1

u
  du � lnZuZ � C

 3. #eu
 du � eu � C 4. #bu

 du �
1

ln b
 bu � C

 5. #sin u du � �cos u � C 6. #cos u du � sin u � C

 7. #sec2 u du � tan u � C 8. #csc2 u du � �cot u � C

 9. #sec u tan u du � sec u � C 10. #csc u cot u du � �csc u � C

 11. #tan u du � �lnZcos uZ � C 12. #cot u du � lnZsin uZ � C

 13. #sec u du � lnZsec u � tan uZ � C 14. #csc u du � lnZcsc u 2 cot uZ � C

 15. #u sin u du � sin u 2 u cos u � C 16. #u cos u du � cos u � u sin u � C

 17. #sin2 u du � 1
2 u 2

1
4 sin 2u � C 18. #cos2 u du � 1

2 u � 1
4 sin 2u � C

 19. #sin au sin bu du �
sin(a 2 b)u

2(a 2 b)
2

sin(a � b)u

2(a � b)
� C 20. #cos au cos bu du �

sin(a 2 b)u

2(a 2 b)
�

sin(a � b)u

2(a � b)
� C

 21. #eau sin bu du �
eau 

a2 � b2 (a sin bu 2 b cos bu) � C 22. #eau cos bu du �
eau 

a2 � b2 (a cos bu � b sin bu) � C

 23. #sinh u du � cosh u � C 24. #cosh u du � sinh u � C

 25. #sech2
 u du � tanh u � C 26. #csch2

 u du � �coth u � C

 27. #tanh u du � ln(cosh u) � C 28. #coth u du � lnZsinh uZ � C

 29. #ln u du � u ln u 2 u � C 30. #u ln u du � 1
2 u

2 ln u 2 1
4 u

2 � C

 31. # 1

"a2 2 u2
 du � sin21 

u
a

 � C  32. # 1

"a2 � u2
 du � ln Pu � "a2 � u2 P � C 

 33. #"a2 2 u2 du �
u

2
"a2 2 u2 �

a2

2
 sin21 

u
a

 � C 34. #"a2 � u2du �
u

2
"a2 � u2 �

a2

2
 ln Pu � "a2 � u2 P � C 

 35. # 1

a2 2 u2 du �
1
a

 ln Pa � u
a 2 u P � C 36. # 1

a2 � u2 du �
1
a

 tan�1 
u
a

� C

 37. # 1

"u2 2 a2
 du � ln Pu � "u2 2 a2 P � C 38. #"u2 2 a2du �

u

2
"u2 2 a2 2

a2

2
 ln Pu � "u2 2 a2 P � C
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  xi

In courses such as calculus or differential equations, the content is fairly standardized 
but the content of a course entitled engineering mathematics often varies considerably 
between two different academic institutions. Therefore a text entitled Advanced Engi-
neering Mathematics is a compendium of many mathematical topics, all of which are 
loosely related by the expedient of either being needed or useful in courses in science and 
engineering or in subsequent careers in these areas. There is literally no upper bound to 
the number of topics that could be included in a text such as this. Consequently, this book 
represents the author’s opinion of what constitutes engineering mathematics.

 Content of the Text
For flexibility in topic selection this text is divided into five major parts. As can be seen 
from the titles of these various parts it should be obvious that it is my belief that the 
backbone of science/engineering related mathematics is the theory and applications of 
ordinary and partial differential equations.

Part 1: Ordinary Differential Equations (Chapters 1–6)

The six chapters in Part 1 constitute a complete short course in ordinary differential equa-
tions. These chapters, with some modifications, correspond to Chapters 1, 2, 3, 4, 5, 6, 
7, and 9 in the text A First Course in Differential Equations with Modeling Applications, 
Eleventh Edition, by Dennis G. Zill (Cengage Learning). In Chapter 2 the focus is on 
methods for solving first-order differential equations and their applications. Chapter 3 
deals mainly with linear second-order differential equations and their applications. Chap-
ter 4 is devoted to the solution of differential equations and systems of differential equa-
tions by the important Laplace transform.

Part 2: Vectors, Matrices, and Vector Calculus (Chapters 7–9)

Chapter 7, Vectors, and Chapter 9, Vector Calculus, include the standard topics that are 
usually covered in the third semester of a calculus sequence: vectors in 2- and 3-space, 
vector functions, directional derivatives, line integrals, double and triple integrals, surface 
integrals, Green’s theorem, Stokes’ theorem, and the divergence theorem. In Section 7.6 
the vector concept is generalized; by defining vectors analytically we lose their geometric 
interpretation but keep many of their properties in n-dimensional and infinite-dimensional 
vector spaces. Chapter 8, Matrices, is an introduction to systems of algebraic equations, 
determinants, and matrix algebra, with special emphasis on those types of matrices that 
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xii Preface

are useful in solving systems of linear differential equations. Optional sections on cryp-
tography, error correcting codes, the method of least squares, and discrete compartmental 
models are presented as applications of matrix algebra.

Part 3: Systems of Differential Equations (Chapters 10 and 11)

There are two chapters in Part 3. Chapter 10, Systems of Linear Differential Equations, 
and Chapter 11, Systems of Nonlinear Differential Equations, draw heavily on the matrix 
material presented in Chapter 8 of Part 2. In Chapter 10, systems of linear first-order 
equations are solved utilizing the concepts of eigenvalues and eigenvectors, diagonaliza-
tion, and by means of a matrix exponential function. In Chapter 11, qualitative aspects of 
autonomous linear and nonlinear systems are considered in depth.

Part 4: Partial Differential Equations (Chapters 12–16)

The core material on Fourier series and boundary-value problems involving second-order 
partial differential equations was originally drawn from the text Differential Equations with 
Boundary-Value Problems, Ninth Edition, by Dennis G. Zill (Cengage Learning). In Chapter 
12, Orthogonal Functions and Fourier Series, the fundamental topics of sets of orthogonal 
functions and expansions of functions in terms of an infinite series of orthogonal functions 
are presented. These topics are then utilized in Chapters 13 and 14 where boundary-value 
problems in rectangular, polar, cylindrical, and spherical coordinates are solved using the 
method of separation of variables. In Chapter 15, Integral Transform Method, boundary-
value problems are solved by means of the Laplace and Fourier integral transforms.

Part 5: Complex Analysis (Chapters 17–20)

The final four chapters of the hardbound text cover topics ranging from the basic complex 
number system through applications of conformal mappings in the solution of Dirichlet’s prob-
lem. This material by itself could easily serve as a one quarter introductory course in complex 
variables. This material was taken from Complex Analysis: A First Course with  Applications, 
Third Edition, by Dennis G. Zill and Patrick D. Shanahan (Jones & Bartlett Learning).

Additional Online Material: Probability and Statistics (Chapters 21 and 22)

These final two chapters cover the basic rudiments of probability and statistics and can  obtained 
as either a PDF download on the accompanying Student Companion Website and Projects 
Center or as part of a custom publication. For more information on how to access these addi-
tional chapters, please contact your Account Specialist at go.jblearning.com/findmyrep.

 Design of the Text
For the benefit of those instructors and students who have not used the preceding edition, 
a word about the design of the text is in order. Each chapter opens with its own table of 
contents and a brief introduction to the material covered in that chapter. Because of the 
great number of figures, definitions, and theorems throughout this text, I use a double-
decimal numeration system. For example, the interpretation of “Figure 1.2.3” is

 Chapter Section of Chapter 1
 T T
 1.2.3 d Third figure in Section 1.2

I think that this kind of numeration makes it easier to find, say, a theorem or figure when it is 
referred to in a later section or chapter. In addition, to better link a figure with the text, the first 
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textual reference to each figure is done in the same font style and color as the figure number. 
For example, the first reference to the second figure in Section 5.7 is given as FIGURE 5.7.2 and 
all subsequent references to that figure are written in the tradition style Figure 5.7.2.

 Key Features of the Sixth Edition
 • The principal goal of this revision was to add many new, and I feel interesting, 

problems and applications throughout the text. For example, Sawing Wood in 
Exercises 2.8, Bending of a Circular Plate in Exercises 3.6, Spring Pendulum in 
Chapter 3 in Review, and Cooling Fin in Exercises 5.3 are new to this edition. Also, 
the application problems

Air Exchange, Exercises 2.7
Potassium-40 Decay, Exercises 2.9
Potassium-Argon Dating, Exercises 2.9
Invasion of the Marine Toads, Chapter 2 in Review
Temperature of a Fluid, Exercises 3.6
Blowing in the Wind, Exercises 3.9
The Caught Pendulum, Exercises 3.11
The Paris Guns, Chapter 3 in Review 

  contributed to the last edition were left in place.
 • Throughout the text I have given a greater emphasis to the concepts of piecewise-

linear differential equations and solutions that involve integral-defined functions.
 • The superposition principle has been added to the discussion in Section 13.4, 

Wave Equation.
 • To improve its clarity, Section 13.6, Nonhomogeneous Boundary-Value Problems, 

has been rewritten.
 • Modified Bessel functions are given a greater emphasis in Section 14.2, Cylindrical 

Coordinates.

 Supplements
For Instructors

 •  Complete Solutions Manual (CSM ) by Warren S. Wright and Roberto Martinez
 • Test Bank
 • Slides in PowerPoint format
 • Image Bank
 • WebAssign: WebAssign is a flexible and fully customizable online instructional 

system that puts powerful tools in the hands of teachers, enabling them to deploy 
assignments, instantly assess individual student performance, and realize their 
teaching goals. Much more than just a homework grading system, WebAssign 
delivers secure online testing, customizable precoded questions directly from 
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The purpose of this short chapter 
is twofold: to introduce the basic 
terminology of differential 
equations and to briefly examine 
how differential equations arise 
in an attempt to describe or 
model physical phenomena in 
mathematical terms.
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1.1 Definitions and Terminology

INTRODUCTION The words differential and equation certainly suggest solving some kind 
of equation that contains derivatives. But before you start solving anything, you must learn some 
of the basic defintions and terminology of the subject.

 A Definition The derivative dy/dx of a function y � f(x) is itself another function f�(x) 

found by an appropriate rule. For example, the function y � e0.1x2

 is differentiable on the interval 

(�q , q ), and its derivative is dy/dx � 0.2xe0.1x2

. If we replace e0.1x2

 in the last equation by the 

symbol y, we obtain

 
dy

dx
� 0.2xy. (1)

Now imagine that a friend of yours simply hands you the differential equation in (1), and that 
you have no idea how it was constructed. Your friend asks: “What is the function represented by 
the symbol y?” You are now face-to-face with one of the basic problems in a course in differen-
tial equations:

How do you solve such an equation for the unknown function y � f(x)?

The problem is loosely equivalent to the familiar reverse problem of differential calculus: Given 
a derivative, find an antiderivative.

Before proceeding any further, let us give a more precise definition of the concept of a dif-
ferential equation.

In order to talk about them, we will classify a differential equation by type, order, and linearity.

 Classification by Type If a differential equation contains only ordinary derivatives of 
one or more functions with respect to a single independent variable it is said to be an ordinary 
differential equation (ODE). An equation involving only partial derivatives of one or more 
functions of two or more independent variables is called a partial differential equation (PDE). 
Our first example illustrates several of each type of differential equation.

EXAMPLE 1 Types of Differential Equations
(a) The equations

 an ODE can contain more
 than one dependent variable
 T T

 
dy

dx
� 6y � e 

�x, 
d  2y

dx2 �
dy

dx
2 12y � 0, and 

dx

dt
�

dy

dt
� 3x � 2y (2)

are examples of ordinary differential equations.

(b) The equations

 
02u

0x2 �
02u

0y2 � 0, 
02u

0x2 �
02u

0t 2 2
0u
0t

, 
0u
0y

� � 

0v
0x

 (3)

are examples of partial differential equations. Notice in the third equation that there are two 
dependent variables and two independent variables in the PDE. This indicates that u and v 
must be functions of two or more independent variables.

Definition 1.1.1 Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to 
one or more independent variables, is said to be a differential equation (DE).
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 Notation Throughout this text, ordinary derivatives will be written using either the Leibniz 
notation dy/dx, d 2y/dx 2, d 3y/dx 3, … , or the prime notation y�, y �, y �, … . Using the latter nota-
tion, the first two differential equations in (2) can be written a little more compactly as 
y� � 6y � e�x and y � � y� � 12y � 0, respectively. Actually, the prime notation is used to denote 
only the first three derivatives; the fourth derivative is written y(4) instead of y ��. In general, the 
nth derivative is d ny/dx n or y(n). Although less convenient to write and to typeset, the Leibniz 
notation has an advantage over the prime notation in that it clearly displays both the dependent 
and independent variables. For example, in the differential equation d 2x/dt 2 � 16x � 0, it is im-
mediately seen that the symbol x now represents a dependent variable, whereas the independent 
variable is t. You should also be aware that in physical sciences and engineering, Newton’s dot 
notation (derogatively referred to by some as the “flyspeck” notation) is sometimes used to 
denote derivatives with respect to time t. Thus the differential equation d 2s/dt 2 � �32 becomes 
s$ � �32. Partial derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, the first and second equations in (3) can be written, in turn, as 
uxx � uyy � 0 and uxx � utt � ut.

 Classification by Order The order of a differential equation (ODE or PDE) is the 
order of the highest derivative in the equation.

EXAMPLE 2 Order of a Differential Equation
The differential equations

 highest order highest order
 T T

 
d  2y

dx  2 � 5ady

dx
b

3

2 4y � ex,  2
04u

0x4 �
02u

0t 2 � 0

are examples of a second-order ordinary differential equation and a fourth-order partial dif-
ferential equation, respectively.

A first-order ordinary differential equation is sometimes written in the differential form

 M(x, y) dx � N(x, y) dy � 0.

EXAMPLE 3 Differential Form of a First-Order ODE
If we assume that y is the dependent variable in a first-order ODE, then recall from calculus 
that the differential dy is defined to be dy � y9dx.

(a) By dividing by the differential dx an alternative form of the equation (y 2 x) dx 1 
4x dy � 0 is given by

 y 2 x � 4x 

dy

dx
� 0 or equivalently 4x 

dy

dx
� y � x.

(b) By multiplying the differential equation

6xy 

dy

dx
� x2 � y2 � 0

by dx we see that the equation has the alternative differential form

 (x2 � y2) dx � 6xy dy � 0.

In symbols, we can express an nth-order ordinary differential equation in one dependent vari-
able by the general form

 F(x, y, y�, … , y(n) ) � 0, (4)

where F is a real-valued function of n � 2 variables: x, y, y�, … , y(n). For both practical and 
theoretical reasons, we shall also make the assumption hereafter that it is possible to solve an 
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ordinary differential equation in the form (4) uniquely for the highest derivative y(n) in terms of 
the remaining n � 1 variables. The differential equation

d  ny

dx  n � f (x, y, y9, p  , y (n21) ), (5)

where f is a real-valued continuous function, is referred to as the normal form of (4). Thus, when 
it suits our purposes, we shall use the normal forms

 
dy

dx
� f (x, y) and 

d  2y

dx  2 � f (x, y, y9)

to represent general first- and second-order ordinary differential equations.

EXAMPLE 4 Normal Form of an ODE
(a) By solving for the derivative dy/dx the normal form of the first-order differential equation

4x  

dy

dx
� y � x is 

dy

dx
�

x 2 y

4x
.

(b) By solving for the derivative y0  the normal form of the second-order differential 
equation

 y� � y� � 6y � 0 is y� � y� � 6y.

 Classification by Linearity An nth-order ordinary differential equation (4) is said to 
be linear in the variable y if F is linear in y, y�, … , y(n). This means that an nth-order ODE is 
linear when (4) is an(x)y  (n) � an21(x)y( n21) � p � a1(x)y9 � a0(x)y 2 g(x) � 0 or

 an(x) 
d  ny

dx  n � an21(x) 
d  n21y

dxn21 � p � a1(x) 
dy

dx
� a0(x)y � g(x). (6)

Two important special cases of (6) are linear first-order (n � 1) and linear second-order
(n � 2) ODEs.

a1(x) 
dy

dx
� a0(x)y � g(x) and a2(x) 

d  2y

dx2 � a1(x) 
dy

dx
� a0(x)y � g(x). (7)

In the additive combination on the left-hand side of (6) we see that the characteristic two proper-
ties of a linear ODE are

•  The dependent variable y and all its derivatives y�, y�, … , y(n) are of the first degree; that 
is, the power of each term involving y is 1.

•  The coefficients a0, a1, … , an of y, y�, … , y(n) depend at most on the independent 
variable x.

A nonlinear ordinary differential equation is simply one that is not linear. If the coefficients 
of y, y�, … , y(n) contain the dependent variable y or its derivatives or if powers of y, y�, … , 
y(n), such as (y�)2, appear in the equation, then the DE is nonlinear. Also, nonlinear functions 
of the dependent variable or its derivatives, such as sin y or ey� cannot appear in a linear 
 equation.

 EXAMPLE 5 Linear and Nonlinear Differential Equations
(a) The equations

 (y 2 x) dx � 4x  dy � 0, y0 2 2y9 � y � 0, x3 
d  3y

dx 
3 � 3x 

dy

dx
2 5y � e 

x

are, in turn, examples of linear first-, second-, and third-order ordinary differential equations. 
We have just demonstrated in part (a) of Example 3 that the first equation is linear in y by 
writing it in the alternative form 4xy� � y � x.

Remember these two 
characteristics of a 
linear ODE.
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(b) The equations

 nonlinear term: nonlinear term: nonlinear term:
 coefficient depends on y nonlinear function of y power not 1

 T T T

(1 2 y)y9 � 2y � ex,  
d  2y

dx2 �  sin y � 0,  
d  4y

dx4 � y2 � 0,

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations, 
respectively.

 Solution As stated before, one of our goals in this course is to solve—or find solutions 
of—differential equations. The concept of a solution of an ordinary differential equation is 
defined next.

Definition 1.1.2 Solution of an ODE

Any function f, defined on an interval I and possessing at least n derivatives that are con-
tinuous on I, which when substituted into an nth-order ordinary differential equation reduces 
the equation to an identity, is said to be a solution of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a function f
that possesses at least n derivatives and

 F(x, f(x), f�(x), … , f(n)(x)) � 0 for all x in I.

We say that f satisfies the differential equation on I. For our purposes, we shall also assume that 

a solution f is a real-valued function. In our initial discussion we have already seen that y � e0.1x2

is a solution of dy/dx � 0.2xy on the interval (�q , q ).
Occasionally it will be convenient to denote a solution by the alternative symbol y(x).

 Interval of Definition You can’t think solution of an ordinary differential equation 
without simultaneously thinking interval. The interval I in Definition 1.1.2 is variously called 
the interval of definition, the interval of validity, or the domain of the solution and can be an 
open interval (a, b), a closed interval [a, b], an infinite interval (a, q ), and so on.

EXAMPLE 6 Verification of a Solution
Verify that the indicated function is a solution of the given differential equation on the interval 
(�q , q ).

(a) 
dy

dx
� xy1>2; y � 1

16 x
4 (b) y� � 2y� � y � 0; y � xex

SOLUTION One way of verifying that the given function is a solution is to see, after substi-
tuting, whether each side of the equation is the same for every x in the interval (�q , q ).

(a) From left-hand side: 
dy

dx
� 4 �

x3

16
�

x3

4

   right-hand side: xy1>2 � x � a x4

16
b

1>2
� x �

x2

4
�

x3

4
,

we see that each side of the equation is the same for every real number x. Note that y1/2 � 14x
2 is, 

by definition, the nonnegative square root of 1
16 x

4.

(b) From the derivatives y� � xex + ex and y� � xex � 2ex we have for every real number x,

 left-hand side: y� � 2y� � y � (xex � 2ex) � 2(xex � ex) � xex � 0
 right-hand side: 0.

Note, too, that in Example 6 each differential equation possesses the constant solution y � 0, 
defined on (�q , q ). A solution of a differential equation that is identically zero on an interval 
I is said to be a trivial solution.
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 Solution Curve The graph of a solution f of an ODE is called a solution curve. Since 
f is a differentiable function, it is continuous on its interval I of definition. Thus there may be a 
difference between the graph of the function f and the graph of the solution f. Put another way, 
the domain of the function f does not need to be the same as the interval I of definition (or 
 domain) of the solution f.

EXAMPLE 7 Function vs. Solution
(a) Considered simply as a function, the domain of y � 1/x is the set of all real numbers x
except 0. When we graph y � 1/x, we plot points in the xy-plane corresponding to a judicious 
sampling of numbers taken from its domain. The rational function y � 1/x is discontinuous 
at 0, and its graph, in a neighborhood of the origin, is given in FIGURE 1.1.1(a). The function 
y � 1/x is not differentiable at x � 0 since the y-axis (whose equation is x � 0) is a vertical 
asymptote of the graph.

(b) Now y � 1/x is also a solution of the linear first-order differential equation xy� � y � 0 
(verify). But when we say y � 1/x is a solution of this DE we mean it is a function defined on 
an interval I on which it is differentiable and satisfies the equation. In other words, 
y � 1/x is a solution of the DE on any interval not containing 0, such as (�3, �1), ( 12, 10), 
(�q, 0), or (0, q). Because the solution curves defined by y � 1/x on the intervals (�3, �1) 
and on (1

2, 10) are simply segments or pieces of the solution curves defined by 
y � 1/x on (�q, 0) and (0, q), respectively, it makes sense to take the interval I to be as large 
as possible. Thus we would take I to be either (�q, 0) or (0, q). The solution curve on the 
interval (0, q) is shown in Figure 1.1.1(b).

 Explicit and Implicit Solutions You should be familiar with the terms explicit and 
implicit functions from your study of calculus. A solution in which the dependent variable is 
expressed solely in terms of the independent variable and constants is said to be an explicit solution. 
For our purposes, let us think of an explicit solution as an explicit formula y � f(x) that we can 
manipulate, evaluate, and differentiate using the standard rules. We have just seen in the last two 
examples that y � 1

16 x 4, y � xex, and y � 1/x are, in turn, explicit solutions of dy/dx � xy1/2, 
y � � 2y� � y � 0, and xy� � y � 0. Moreover, the trivial solution y � 0 is an explicit solution 
of all three equations. We shall see when we get down to the business of actually solving some 
ordinary differential equations that methods of solution do not always lead directly to an explicit 
solution y � f(x). This is particularly true when attempting to solve nonlinear first-order dif-
ferential equations. Often we have to be content with a relation or expression G(x, y) � 0 that 
defines a solution f implicitly.

Definition 1.1.3 Implicit Solution of an ODE

A relation G(x, y) � 0 is said to be an implicit solution of an ordinary differential equation (4) 
on an interval I provided there exists at least one function f that satisfies the relation as well 
as the differential equation on I.

It is beyond the scope of this course to investigate the conditions under which a relation 
G(x, y) � 0 defines a differentiable function f. So we shall assume that if the formal implementa-
tion of a method of solution leads to a relation G(x, y) � 0, then there exists at least one function 
f that satisfies both the relation (that is, G(x, f(x)) � 0) and the differential equation on an in-
terval I. If the implicit solution G(x, y) � 0 is fairly simple, we may be able to solve for y in terms 
of x and obtain one or more explicit solutions. See (iv) in the Remarks.

EXAMPLE 8 Verification of an Implicit Solution
The relation x2 � y2 � 25 is an implicit solution of the nonlinear differential equation

 
dy

dx
� �

x
y

 (8)

y

x1

1

y

x1

1

(a) Function y = 1/x, x ≠ 0

(b) Solution y = 1/x, (0, ∞)

FIGURE 1.1.1 Example 7 illustrates 
the difference between the function 
y � 1/x and the solution y � 1/x
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on the interval defined by �5 	 x 	 5. By implicit differentiation we obtain

d

dx
 x  2 �

d

dx
 y2 �

d

dx
 25  or  2x � 2y 

dy

dx
� 0. (9)

Solving the last equation in (9) for the symbol dy/dx gives (8). Moreover, solving x2 � y2 � 25 

for y in terms of x yields y � 
"25 2 x2. The two functions y � f1(x) � "25 2 x2 and 

y � f2(x) � �"25 2 x2 satisfy the relation (that is, x2 � f2
1 � 25 and x2 � f2

2 � 25) and are 
explicit solutions defined on the interval (�5, 5). The solution curves given in FIGURE 1.1.2(b) 
and 1.1.2(c) are segments of the graph of the implicit solution in Figure 1.1.2(a).

x

y

c > 0

c = 0
c < 0

FIGURE 1.1.3 Some solutions of 
xy� � y � x 2 sin x

Any relation of the form x2 � y2 � c � 0 formally satisfies (8) for any constant c. However, 
it is understood that the relation should always make sense in the real number system; thus, for 
example, we cannot say that x2 � y2 � 25 � 0 is an implicit solution of the equation. Why not?

Because the distinction between an explicit solution and an implicit solution should be intui-
tively clear, we will not belabor the issue by always saying, “Here is an explicit (implicit) 
solution.”

 Families of Solutions The study of differential equations is similar to that of integral 
calculus. When evaluating an antiderivative or indefinite integral in calculus, we use a single constant 
c of integration. Analogously, when solving a first-order differential equation F(x, y, y�) � 0, we 
usually obtain a solution containing a single arbitrary constant or parameter c. A solution contain-
ing an arbitrary constant represents a set G(x, y, c) � 0 of solutions called a one-parameter 
family of solutions. When solving an nth-order differential equation F(x, y, y�, … , y(n)) � 0, we 
seek an n-parameter family of solutions G(x, y, c1, c2, … , cn) � 0. This means that a single 
differential equation can possess an infinite number of solutions corresponding to the unlim-
ited number of choices for the parameter(s). A solution of a differential equation that is free 
of arbitrary parameters is called a particular solution. For example, the one-parameter family 
y � cx � x cos x is an explicit solution of the linear first-order equation xy� � y � x2 sin x on the 
interval (�q , q ) (verify). FIGURE 1.1.3, obtained using graphing software, shows the graphs of 
some of the solutions in this family. The solution y � �x cos x, the red curve in the figure, is a 
particular solution corresponding to c � 0. Similarly, on the interval (�q , q ), y � c1e x � c2xe x 
is a two-parameter family of solutions (verify) of the linear second-order equation y � � 2y� � y � 0 
in part (b) of Example 6. Some particular solutions of the equation are the trivial solution 
y � 0 (c1 � c2 � 0), y � xex (c1 � 0, c2 � 1), y � 5e x � 2xe x (c1 � 5, c2 � �2), and so on.

In all the preceding examples, we have used x and y to denote the independent and dependent 
variables, respectively. But you should become accustomed to seeing and working with other 
symbols to denote these variables. For example, we could denote the independent variable by t 
and the dependent variable by x.

EXAMPLE 9 Using Different Symbols
The functions x � c1 cos 4t and x � c2 sin 4t, where c1 and c2 are arbitrary constants or 
parameters, are both solutions of the linear differential equation

 x� � 16x � 0.

(a) Implicit solution

5

–5

x

y

–5

5

x2 + y2 = 25
(b) Explicit solution

y1 = √25 – x2, –5 < x < 5

5
x

y

–5

5

(c) Explicit solution

y2 = –√25 – x2, –5 < x < 5

5

–5

x

y

–5

5

FIGURE 1.1.2  An implicit solution and two explicit solutions in Example 8
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