ADVANCED ENGINEERING MATHEMATICS SIXTH EDITION

Welcome

Differentiation Rules

1. Constant: $\frac{d}{d x} c=0$
2. Constant Multiple: $\frac{d}{d x} c f(x)=c f^{\prime}(x)$
3. Sum: $\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)$
4. Product: $\frac{d}{d x} f(x) g(x)=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$
5. Quotient: $\frac{d}{d x} \frac{f(x)}{g(x)}=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
6. Chain: $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
7. Power: $\frac{d}{d x} x^{n}=n x^{n-1}$
8. Power: $\frac{d}{d x}[g(x)]^{n}=n[g(x)]^{n-1} g^{\prime}(x)$

Derivatives of Functions

Trigonometric:
9. $\frac{d}{d x} \sin x=\cos x$
10. $\frac{d}{d x} \cos x=-\sin x$
11. $\frac{d}{d x} \tan x=\sec ^{2} x$
12. $\frac{d}{d x} \cot x=-\csc ^{2} x$
13. $\frac{d}{d x} \sec x=\sec x \tan x$
14. $\frac{d}{d x} \csc x=-\csc x \cot x$

Inverse trigonometric:
15. $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$
16. $\frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}$
17. $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$
18. $\frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}}$
19. $\frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}}$
20. $\frac{d}{d x} \csc ^{-1} x=-\frac{1}{|x| \sqrt{x^{2}-1}}$

Hyperbolic:
21. $\frac{d}{d x} \sinh x=\cosh x$
22. $\frac{d}{d x} \cosh x=\sinh x$
23. $\frac{d}{d x} \tanh x=\operatorname{sech}^{2} x$
24. $\frac{d}{d x} \operatorname{coth} x=-\operatorname{csch}^{2} x$
25. $\frac{d}{d x} \operatorname{sech} x=-\operatorname{sech} x \tanh x$
26. $\frac{d}{d x} \operatorname{csch} x=-\operatorname{csch} x \operatorname{coth} x$ Inverse hyperbolic:
27. $\frac{d}{d x} \sinh ^{-1} x=\frac{1}{\sqrt{x^{2}+1}}$
28. $\frac{d}{d x} \cosh ^{-1} x=\frac{1}{\sqrt{x^{2}-1}}$
29. $\frac{d}{d x} \tanh ^{-1} x=\frac{1}{1-x^{2}},|x|<1$
30. $\frac{d}{d x} \operatorname{coth}^{-1} x=\frac{1}{1-x^{2}},|x|>1$
31. $\frac{d}{d x} \operatorname{sech}^{-1} x=-\frac{1}{x \sqrt{1-x^{2}}}$
32. $\frac{d}{d x} \operatorname{csch}^{-1} x=-\frac{1}{|x| \sqrt{x^{2}+1}}$

Exponential:
33. $\frac{d}{d x} e^{x}=e^{x}$
34. $\frac{d}{d x} b^{x}=b^{x}(\ln b)$

Logarithmic:

$$
\text { 35. } \frac{d}{d x} \ln |x|=\frac{1}{x}
$$

36. $\frac{d}{d x} \log _{b} x=\frac{1}{x(\ln b)}$

Of an integral:
37. $\frac{d}{d x} \int_{a}^{x} g(t) d t=g(x)$
38. $\frac{d}{d x} \int_{a}^{b} g(x, t) d t=\int_{a}^{b} \frac{\partial}{\partial x} g(x, t) d t$

Integration Formulas

1. $\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, n \neq-1$
2. $\int e^{u} d u=e^{u}+C$
3. $\int \sin u d u=-\cos u+C$
4. $\int \sec ^{2} u d u=\tan u+C$
5. $\int \sec u \tan u d u=\sec u+C$
6. $\int \tan u d u=-\ln |\cos u|+C$
7. $\int \sec u d u=\ln |\sec u+\tan u|+C$
8. $\int u \sin u d u=\sin u-u \cos u+C$
9. $\int \sin ^{2} u d u=\frac{1}{2} u-\frac{1}{4} \sin 2 u+C$
10. $\int \sin a u \sin b u d u=\frac{\sin (a-b) u}{2(a-b)}-\frac{\sin (a+b) u}{2(a+b)}+C$
11. $\int e^{a u} \sin b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \sin b u-b \cos b u)+C$
12. $\int \sinh u d u=\cosh u+C$
13. $\int \operatorname{sech}^{2} u d u=\tanh u+C$
14. $\int \tanh u d u=\ln (\cosh u)+C$
15. $\int \ln u d u=u \ln u-u+C$
16. $\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\sin ^{-1} \frac{u}{a}+C$
17. $\int \sqrt{a^{2}-u^{2}} d u=\frac{u}{2} \sqrt{a^{2}-u^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{u}{a}+C$
18. $\int \frac{1}{a^{2}-u^{2}} d u=\frac{1}{a} \ln \left|\frac{a+u}{a-u}\right|+C$
19. $\int \frac{1}{\sqrt{u^{2}-a^{2}}} d u=\ln \left|u+\sqrt{u^{2}-a^{2}}\right|+C$
20. $\int \frac{1}{u} d u=\ln |u|+C$
21. $\int b^{u} d u=\frac{1}{\ln b} b^{u}+C$
22. $\int \cos u d u=\sin u+C$
23. $\int \csc ^{2} u d u=-\cot u+C$
24. $\int \csc u \cot u d u=-\csc u+C$
25. $\int \cot u d u=\ln |\sin u|+C$
26. $\int \csc u d u=\ln |\csc u-\cot u|+C$
27. $\int u \cos u d u=\cos u+u \sin u+C$
28. $\int \cos ^{2} u d u=\frac{1}{2} u+\frac{1}{4} \sin 2 u+C$
29. $\int \cos a u \cos b u d u=\frac{\sin (a-b) u}{2(a-b)}+\frac{\sin (a+b) u}{2(a+b)}+C$
30. $\int e^{a u} \cos b u d u=\frac{e^{a u}}{a^{2}+b^{2}}(a \cos b u+b \sin b u)+C$
31. $\int \cosh u d u=\sinh u+C$
32. $\int \operatorname{csch}^{2} u d u=-\operatorname{coth} u+C$
33. $\int \operatorname{coth} u d u=\ln |\sinh u|+C$
34. $\int u \ln u d u=\frac{1}{2} u^{2} \ln u-\frac{1}{4} u^{2}+C$
35. $\int \frac{1}{\sqrt{a^{2}+u^{2}}} d u=\ln \left|u+\sqrt{a^{2}+u^{2}}\right|+C$
36. $\int \sqrt{a^{2}+u^{2}} d u=\frac{u}{2} \sqrt{a^{2}+u^{2}}+\frac{a^{2}}{2} \ln \left|u+\sqrt{a^{2}+u^{2}}\right|+C$
37. $\int \frac{1}{a^{2}+u^{2}} d u=\frac{1}{a} \tan ^{-1} \frac{u}{a}+C$
38. $\int \sqrt{u^{2}-a^{2}} d u=\frac{u}{2} \sqrt{u^{2}-a^{2}}-\frac{a^{2}}{2} \ln \left|u+\sqrt{u^{2}-a^{2}}\right|+C$

ADVANCED ENGINEERING MATHEMATICS SIXTH EDITION

Dennis G. Zill
Loyola Marymount University

JONES \& BARTLETT
LEARNING

World Headquarters
Jones \& Bartlett Learning
5 Wall Street
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com
Jones \& Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones \& Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones \& Bartlett Learning publications are available to corporations, professional associations, and other qualified organizations. For details and specific discount information, contact the special sales department at Jones \& Bartlett Learning via the above contact information or send an email to specialsales@jblearning.com.

Copyright © 2018 by Jones \& Bartlett Learning, LLC, an Ascend Learning Company
All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones \& Bartlett Learning, LLC. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by Jones \& Bartlett Learning, LLC and such reference shall not be used for advertising or product endorsement purposes. All trademarks displayed are the trademarks of the parties noted herein. Advanced Engineering Mathematics, Sixth Edition is an independent publication and has not been authorized, sponsored, or otherwise approved by the owners of the trademarks or service marks referenced in this product.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in the activities represented in the images. Any screenshots in this product are for educational and instructive purposes only. Any individuals and scenarios featured in the case studies throughout this product may be real or fictitious, but are used for instructional purposes only.

Production Credits

VP, Executive Publisher: David D. Cella
Executive Editor: Matt Kane
Acquisitions Editor: Laura Pagluica
Associate Editor: Taylor Ferracane
Vendor Manager: Sara Kelly
Director of Marketing: Andrea DeFronzo
VP, Manufacturing and Inventory Control: Therese Connell
Composition and Project Management: Aptara ${ }^{\circledR}$, Inc.
Cover Design: Kristin E. Parker
Rights \& Media Specialist: Merideth Tumasz
Media Development Editor: Shannon Sheehan
Cover Images: Domestic: © NASA International: © CHEN MIN CHUN/Shutterstock
Printing and Binding: RR Donnelley
Cover Printing: RR Donnelley
To order this product, use ISBN: 978-1-284-10590-2

Library of Congress Cataloging-in-Publication Data

Author: Zill, Dennis G.
Title: Advanced Engineering Mathematics / Dennis G. Zill, Loyola Marymount University.
Description: Sixth edition. I Burlington, MA : Jones \& Bartlett Learning,
[2017] | Includes index.
Identifiers: LCCN 2016022410 ISBN 9781284105902 (casebound) I ISBN
1284105903 (casebound)
Subjects: LCSH: Engineering mathematics.
Classification: LCC TA330 . Z55 2017 I DDC 620.001/51—dc23
LC record available at https://lccn.loc.gov/2016022410

6048

Printed in the United States of America
$\begin{array}{llllllllllll}20 & 19 & 18 & 17 & 16 & 10 & 9 & 8 & 7 & 6 & 5 & 3\end{array}$

Contents

Preface xiii
PART 1
Ordinary Differential Equations 1

1 Introduction to Differential Equations 3
1.1 Definitions and Terminology 4
1.2 Initial-Value Problems 14
1.3 Differential Equations as Mathematical Models 19
Chapter 1 in Review 30

2 First-Order Differential Equations 33
2.1 Solution Curves Without a Solution 34
2.1.1 Direction Fields 34
2.1.2 Autonomous First-Order DEs 36
2.2 Separable Equations 43
2.3 Linear Equations 50
2.4 Exact Equations 59
2.5 Solutions by Substitutions 65
2.6 A Numerical Method 69
2.7 Linear Models 74
2.8 Nonlinear Models 84
2.9 Modeling with Systems of First-Order DEs 93
Chapter 2 in Review 99

3 Higher-Order Differential Equations 105
3.1 Theory of Linear Equations 106
3.1.1 Initial-Value and Boundary-Value Problems 106
3.1.2 Homogeneous Equations 108
3.1.3 Nonhomogeneous Equations 113
3.2 Reduction of Order 117
3.3 Homogeneous Linear Equations with Constant Coefficients 120
3.4 Undetermined Coefficients 127
3.5 Variation of Parameters 136
3.6 Cauchy-Euler Equations 141
3.7 Nonlinear Equations 147
3.8 Linear Models: Initial-Value Problems 151
3.8.1 Spring/Mass Systems: Free Undamped Motion 152
3.8.2 Spring/Mass Systems: Free Damped Motion 155
3.8.3 Spring/Mass Systems: Driven Motion 158
3.8.4 Series Circuit Analogue 161
3.9 Linear Models: Boundary-Value Problems 167
3.10 Green's Functions 177
3.10.1 Initial-Value Problems 177
3.10.2 Boundary-Value Problems 183
3.11 Nonlinear Models 187
3.12 Solving Systems of Linear Equations 196
Chapter 3 in Review 203
4 The Laplace Transform 211
4.1 Definition of the Laplace Transform 212
4.2 The Inverse Transform and Transforms of Derivatives 218
4.2.1 Inverse Transforms 218
4.2.2 Transforms of Derivatives 220
4.3 Translation Theorems 226
4.3.1 Translation on the s-axis 226
4.3.2 Translation on the t-axis 229
4.4 Additional Operational Properties 236
4.4.1 Derivatives of Transforms 237
4.4.2 Transforms of Integrals 238
4.4.3 Transform of a Periodic Function 244
4.5 The Dirac Delta Function 248
4.6 Systems of Linear Differential Equations 251
Chapter 4 in Review 257

5 Series Solutions of Linear Differential Equations 261
5.1 Solutions about Ordinary Points 262
5.1.1 Review of Power Series 262
5.1.2 Power Series Solutions 264
5.2 Solutions about Singular Points 271
5.3 Special Functions 280
5.3.1 Bessel Functions 280
5.3.2 Legendre Functions 288
Chapter 5 in Review 294
6 Numerical Solutions of Ordinary Differential Equations 297
6.1 Euler Methods and Error Analysis 298
6.2 Runge-Kutta Methods 302
6.3 Multistep Methods 307
6.4 Higher-Order Equations and Systems 309
6.5 Second-Order Boundary-Value Problems 313
Chapter 6 in Review 317
PART 2 Vectors, Matrices, and Vector Calculus 319
7 Vectors 321
7.1 Vectors in 2-Space 322
7.2 Vectors in 3-Space 327
7.3 Dot Product 332
7.4 Cross Product 338
7.5 Lines and Planes in 3-Space 345
7.6 Vector Spaces 351
7.7 Gram-Schmidt Orthogonalization Process 359
Chapter 7 in Review 364

8 Matrices 367
8.1 Matrix Algebra 368
8.2 Systems of Linear Algebraic Equations 376
8.3 Rank of a Matrix 389
8.4 Determinants 393
8.5 Properties of Determinants 399
8.6 Inverse of a Matrix 405
8.6.1 Finding the Inverse 405
8.6.2 Using the Inverse to Solve Systems 411
8.7 Cramer's Rule 415
8.8 The Eigenvalue Problem 418
8.9 Powers of Matrices 426
8.10 Orthogonal Matrices 430
8.11 Approximation of Eigenvalues 437
8.12 Diagonalization 444
8.13 LU-Factorization 452
8.14 Cryptography 459
8.15 An Error-Correcting Code 463
8.16 Method of Least Squares 468
8.17 Discrete Compartmental Models 472
Chapter 8 in Review 476
9 Vector Calculus 479
9.1 Vector Functions 480
9.2 Motion on a Curve 486
9.3 Curvature and Components of Acceleration 491
9.4 Partial Derivatives 496
9.5 Directional Derivative 501
9.6 Tangent Planes and Normal Lines 507
9.7 Curl and Divergence 510
9.8 Line Integrals 516
9.9 Independence of the Path 524
9.10 Double Integrals 534

9.11 Double Integrals in Polar Coordinates 542
9.12 Green's Theorem 546
9.13 Surface Integrals 552
9.14 Stokes' Theorem 559
9.15 Triple Integrals 564
9.16 Divergence Theorem 574
9.17 Change of Variables in Multiple Integrals 580
Chapter 9 in Review 586
PART 3 Systems of Differential Equations 589

10 Systems of Linear Differential Equations 591
10.1 Theory of Linear Systems 592
10.2 Homogeneous Linear Systems 598
10.2.1 Distinct Real Eigenvalues 599
10.2.2 Repeated Eigenvalues 602
10.2.3 Complex Eigenvalues 606
10.3 Solution by Diagonalization 611
10.4 Nonhomogeneous Linear Systems 614
10.4.1 Undetermined Coefficients 614
10.4.2 Variation of Parameters 616
10.4.3 Diagonalization 619
10.5 Matrix Exponential 621
Chapter 10 in Review 626

Systems of Nonlinear Differential Equations 629
11.1 Autonomous Systems 630
11.2 Stability of Linear Systems 636
11.3 Linearization and Local Stability 643
11.4 Autonomous Systems as Mathematical Models 652
11.5 Periodic Solutions, Limit Cycles, and Global Stability 659
Chapter 11 in Review 667
PART 4 Partial Differential Equations 669

12 Orthogonal Functions and Fourier Series 671
12.1 Orthogonal Functions 672
12.2 Fourier Series 677
12.3 Fourier Cosine and Sine Series 681
12.4 Complex Fourier Series 688
12.5 Sturm-Liouville Problem 692
12.6 Bessel and Legendre Series 698
12.6.1 Fourier-Bessel Series 698
12.6.2 Fourier-Legendre Series 701
Chapter 12 in Review 704
13 Boundary-Value Problems in Rectangular Coordinates 707

13.1 Separable Partial Differential Equations 708
13.2 Classical PDEs and Boundary-Value Problems 711
13.3 Heat Equation 716
13.4 Wave Equation 719
13.5 Laplace's Equation 725
13.6 Nonhomogeneous Boundary-Value Problems 730
13.7 Orthogonal Series Expansions 737
13.8 Fourier Series in Two Variables 741
Chapter 13 in Review 744

14 Boundary-Value Problems in Other Coordinate Systems 747
14.1 Polar Coordinates 748
14.2 Cylindrical Coordinates 753
14.3 Spherical Coordinates 760
Chapter 14 in Review 763

15 Integral Transform Method 767
15.1 Error Function 768
15.2 Applications of the Laplace Transform 770
15.3 Fourier Integral 777
15.4 Fourier Transforms 782
15.5 Fast Fourier Transform 788
Chapter 15 in Review 798
16 Numerical Solutions of Partial Differential Equations 801
16.1 Laplace's Equation 802
16.2 Heat Equation 807
16.3 Wave Equation 812
Chapter 16 in Review 815
PART 5 Complex Analysis 817
17 Functions of a Complex Variable 819
17.1 Complex Numbers 820
17.2 Powers and Roots 823
17.3 Sets in the Complex Plane 828
17.4 Functions of a Complex Variable 830
17.5 Cauchy-Riemann Equations 835
17.6 Exponential and Logarithmic Functions 839
17.7 Trigonometric and Hyperbolic Functions 845
17.8 Inverse Trigonometric and Hyperbolic Functions 849
Chapter 17 in Review 851

18 Integration in the Complex Plane 853
18.1 Contour Integrals 854
18.2 Cauchy-Goursat Theorem 859
18.3 Independence of the Path 863
18.4 Cauchy's Integral Formulas 868
Chapter 18 in Review 874
19 Series and Residues 877
19.1 Sequences and Series 878
19.2 Taylor Series 882
19.3 Laurent Series 887
19.4 Zeros and Poles 894
19.5 Residues and Residue Theorem 897
19.6 Evaluation of Real Integrals 902
Chapter 19 in Review 908
20 Conformal Mappings 911
20.1 Complex Functions as Mappings 912
20.2 Conformal Mappings 916
20.3 Linear Fractional Transformations 922
20.4 Schwarz-Christoffel Transformations 928
20.5 Poisson Integral Formulas 932
20.6 Applications 936
Chapter 20 in Review 942
Appendices
I Derivative and Integral Formulas APP-2
II Gamma Function APP-4
III Table of Laplace Transforms APP-6
IV Conformal Mappings APP-9
Answers to Selected Odd-Numbered Problems ANS-1
Index I-1

Preface

In courses such as calculus or differential equations, the content is fairly standardized but the content of a course entitled engineering mathematics often varies considerably between two different academic institutions. Therefore a text entitled Advanced Engineering Mathematics is a compendium of many mathematical topics, all of which are loosely related by the expedient of either being needed or useful in courses in science and engineering or in subsequent careers in these areas. There is literally no upper bound to the number of topics that could be included in a text such as this. Consequently, this book represents the author's opinion of what constitutes engineering mathematics.

|| Content of the Text

For flexibility in topic selection this text is divided into five major parts. As can be seen from the titles of these various parts it should be obvious that it is my belief that the backbone of science/engineering related mathematics is the theory and applications of ordinary and partial differential equations.

Part 1: Ordinary Differential Equations (Chapters 1-6)

The six chapters in Part 1 constitute a complete short course in ordinary differential equations. These chapters, with some modifications, correspond to Chapters 1, 2, 3, 4, 5, 6, 7, and 9 in the text A First Course in Differential Equations with Modeling Applications, Eleventh Edition, by Dennis G. Zill (Cengage Learning). In Chapter 2 the focus is on methods for solving first-order differential equations and their applications. Chapter 3 deals mainly with linear second-order differential equations and their applications. Chapter 4 is devoted to the solution of differential equations and systems of differential equations by the important Laplace transform.

Part 2: Vectors, Matrices, and Vector Calculus (Chapters 7-9)

Chapter 7, Vectors, and Chapter 9, Vector Calculus, include the standard topics that are usually covered in the third semester of a calculus sequence: vectors in 2- and 3-space, vector functions, directional derivatives, line integrals, double and triple integrals, surface integrals, Green's theorem, Stokes' theorem, and the divergence theorem. In Section 7.6 the vector concept is generalized; by defining vectors analytically we lose their geometric interpretation but keep many of their properties in n-dimensional and infinite-dimensional vector spaces. Chapter 8, Matrices, is an introduction to systems of algebraic equations, determinants, and matrix algebra, with special emphasis on those types of matrices that
are useful in solving systems of linear differential equations. Optional sections on cryptography, error correcting codes, the method of least squares, and discrete compartmental models are presented as applications of matrix algebra.

Part 3: Systems of Differential Equations (Chapters 10 and 11)

There are two chapters in Part 3. Chapter 10, Systems of Linear Differential Equations, and Chapter 11, Systems of Nonlinear Differential Equations, draw heavily on the matrix material presented in Chapter 8 of Part 2. In Chapter 10, systems of linear first-order equations are solved utilizing the concepts of eigenvalues and eigenvectors, diagonalization, and by means of a matrix exponential function. In Chapter 11, qualitative aspects of autonomous linear and nonlinear systems are considered in depth.

Part 4: Partial Differential Equations (Chapters 12-16)

The core material on Fourier series and boundary-value problems involving second-order partial differential equations was originally drawn from the text Differential Equations with Boundary-Value Problems, Ninth Edition, by Dennis G. Zill (Cengage Learning). In Chapter 12, Orthogonal Functions and Fourier Series, the fundamental topics of sets of orthogonal functions and expansions of functions in terms of an infinite series of orthogonal functions are presented. These topics are then utilized in Chapters 13 and 14 where boundary-value problems in rectangular, polar, cylindrical, and spherical coordinates are solved using the method of separation of variables. In Chapter 15, Integral Transform Method, boundaryvalue problems are solved by means of the Laplace and Fourier integral transforms.

Part 5: Complex Analysis (Chapters 17-20)

The final four chapters of the hardbound text cover topics ranging from the basic complex number system through applications of conformal mappings in the solution of Dirichlet's problem. This material by itself could easily serve as a one quarter introductory course in complex variables. This material was taken from Complex Analysis: A First Course with Applications, Third Edition, by Dennis G. Zill and Patrick D. Shanahan (Jones \& Bartlett Learning).

Additional Online Material: Probability and Statistics (Chapters 21 and 22)

These final two chapters cover the basic rudiments of probability and statistics and can obtained as either a PDF download on the accompanying Student Companion Website and Projects Center or as part of a custom publication. For more information on how to access these additional chapters, please contact your Account Specialist at go.jblearning.com/findmyrep.

||| Design of the Text

For the benefit of those instructors and students who have not used the preceding edition, a word about the design of the text is in order. Each chapter opens with its own table of contents and a brief introduction to the material covered in that chapter. Because of the great number of figures, definitions, and theorems throughout this text, I use a doubledecimal numeration system. For example, the interpretation of "Figure 1.2.3" is

```
Chapter Section of Chapter 1
    \downarrow}
    1.2.3}\leftarrow\mathrm{ Third figure in Section 1.2
```

I think that this kind of numeration makes it easier to find, say, a theorem or figure when it is referred to in a later section or chapter. In addition, to better link a figure with the text, the first
textual reference to each figure is done in the same font style and color as the figure number. For example, the first reference to the second figure in Section 5.7 is given as FIGURE 5.7.2 and all subsequent references to that figure are written in the tradition style Figure 5.7.2.

I|| Key Features of the Sixth Edition

- The principal goal of this revision was to add many new, and I feel interesting, problems and applications throughout the text. For example, Sawing Wood in Exercises 2.8, Bending of a Circular Plate in Exercises 3.6, Spring Pendulum in Chapter 3 in Review, and Cooling Fin in Exercises 5.3 are new to this edition. Also, the application problems

Air Exchange, Exercises 2.7
Potassium-40 Decay, Exercises 2.9
Potassium-Argon Dating, Exercises 2.9
Invasion of the Marine Toads, Chapter 2 in Review
Temperature of a Fluid, Exercises 3.6
Blowing in the Wind, Exercises 3.9
The Caught Pendulum, Exercises 3.11
The Paris Guns, Chapter 3 in Review
contributed to the last edition were left in place.

- Throughout the text I have given a greater emphasis to the concepts of piecewiselinear differential equations and solutions that involve integral-defined functions.
- The superposition principle has been added to the discussion in Section 13.4, Wave Equation.
- To improve its clarity, Section 13.6, Nonhomogeneous Boundary-Value Problems, has been rewritten.
- Modified Bessel functions are given a greater emphasis in Section 14.2, Cylindrical Coordinates.

Supplements

For Instructors

- Complete Solutions Manual (CSM) by Warren S. Wright and Roberto Martinez
- Test Bank
- Slides in PowerPoint format
- Image Bank
- WebAssign: WebAssign is a flexible and fully customizable online instructional system that puts powerful tools in the hands of teachers, enabling them to deploy assignments, instantly assess individual student performance, and realize their teaching goals. Much more than just a homework grading system, WebAssign delivers secure online testing, customizable precoded questions directly from exercises in this textbook, and unparalleled customer service. Instructors who adopt this program for their classroom use will have access to a digital version of this textbook. Students who purchase an access code for WebAssign will also have access to the digital version of the printed text.

With WebAssign instructors can:

- Create and distribute algorithmic assignments using questions specific to this textbook
- Grade, record, and analyze student responses and performance instantly
- Offer more practice exercises, quizzes, and homework
- Upload resources to share and communicate with students seamlessly

For more detailed information and to sign up for free faculty access, please visit webassign.com. For information on how students can purchase access to WebAssign bundled with this textbook, please contact your Jones and Bartlett account representative at go.jblearning.com/findmyrep.

Designated instructor materials are for qualified instructors only. Jones \& Bartlett Learning reserves the right to evaluate all requests. For detailed information and to request access to instructor resources, please visit go.jblearning.com/ZillAEM6e.

For Students

- A WebAssign Student Access Code can be bundled with a copy of this text at a discount when requested by the adopting instructor. It may also be purchased separately online when WebAssign is required by the student's instructor or institution. The student access code provides the student with access to his or her specific classroom assignments in WebAssign and access to a digital version of this text.
- A Student Solutions Manual (SSM) prepared by Warren S. Wright and Roberto Martinez provides a solution to every third problem from the text.
- Access to the Student Companion Website and Projects Center, available at go.jblearning.com/ZillAEM6e, is included with each new copy of the text. This site includes the following resources to enhance student learning:
- Chapter 21 Probability
- Chapter 22 Statistics
- Additional projects and essays that appeared in earlier editions of this text, including:

Two Properties of the Sphere
Vibration Control: Vibration Isolation
Vibration Control: Vibration Absorbers
Minimal Surfaces
Road Mirages
Two Ports in Electrical Circuits
The Hydrogen Atom
Instabilities of Numerical Methods
A Matrix Model for Environmental Life Cycle Assessment
Steady Transonic Flow Past Thin Airfoils
Making Waves: Convection, Diffusion, and Traffic Flow
When Differential Equations Invaded Geometry: Inverse Tangent Problem of the $17^{\text {th }}$ Century
Tricky Time: The Isochrones of Huygens and Leibniz
The Uncertainty Inequality in Signal Processing
Traffic Flow
Temperature Dependence of Resistivity
Fraunhofer Diffraction by a Circular Aperture
The Collapse of the Tacoma Narrow Bridge: A Modern Viewpoint
Atmospheric Drag and the Decay of Satellite Orbits
Forebody Drag of Bluff Bodies

Acknowledgments

The task of compiling a text this size is, to say the least, difficult and many people have put much time and energy into this revision. So I would like to take this opportunity to express my sincerest appreciation to everyone-most of them unknown to me-at Jones \& Bartlett Learning and at Aptara, Inc. who were involved in the publication of this
edition. A special word of thanks goes to my editor Laura Pagluica and production editor Sherrill Redd for their guidance in putting all the pieces of a large puzzle together.

Over the years I have been very fortunate to receive valuable input, solicited and unsolicited, from students and my academic colleagues. An occasional word of support is always appreciated, but it is the criticisms and suggestions for improvement that have enhanced each edition. So it is fitting that I once again recognize and thank the following reviewers for sharing their expertise and insights:

Raul M. Aguilar
Massachusetts Maritime Academy
A. Alton

Augustana University
Yuri Antipov
Louisiana State University
Victor Argueta
Alma College
Ken Bosworth
Idaho State University
Kristen Campbell
Elgin Community College
Han-Taw Chen
National Cheng Kung University
John T. Van Cleve
Jacksonville State University
William Criminale
University of Washington
Juan F. Diaz, Jr.
Mount Aloysius College
Vlad Dobrushkin
University of Rhode Island
Jeff Dodd
Jacksonville State University
Victor Elias
University of Western Ontario
Robert E. Fennell
Clemson University
Seferino Fierroz
Oxbridge Academy
Stan Freidlander
Bronx Community University
David Gilliam
Texas Tech University
Stewart Goldenberg
California Polytechnic State
University

Herman Gollwitzer
Drexel University

Ronald B. Gunther
Oregon State University
Daniel Hallinan, Jr.
Florida A\&M University-Florida State
University College of Engineering
Noel Harbetson
California State University
Angela Hare
Messiah College
Donald Hartig
California Polytechnic State University
Sonia Henckel
Lawrence Technological University
Robert W. Hunt
Humbolt State University
David Keyes
Columbia University
Mario Klaric
Midlands Technical College
Vuryl Klassen
California State University, Fullerton
Cecilia Knoll
Florida Institute of Technology
Myren Krom
California State University, Sacramento
David O. Lomen
University of Arizona
Maria Ludu
Embry-Riddle Aeronautical University
Lewis D. Ludwig
Denison University
Tony Mastroberardino
Penn State Erie, The Behrend College
Osvaldo Mendez
University of Texas, El Paso

Kelley B. Mohrmann
U.S. Military Academy

James L. Moseley
West Virginia University
Gregory E. Muleski
University of Missouri, Kansas City
Charles P. Neumann
Carnegie Mellon University
Evgeni Nikolaev
Rutgers University
Bruce O'Neill
Milwaukee School of Engineering
Sang June Oh
California State University, Fullerton
Dale Peterson US Air Force Academy

Christopher S. Raymond
University of Delaware
Geoffrey Recktenwald Michigan State University

Thomas N. Roe
South Dakota State University
Gary Stout
Indiana University of Pennsylvania
Jeremy L. Thompson
US Air Force Academy
Benjamin Varela
Rochester Institute of Technology
Tian-Shiang Yang
National Cheng Kung University
Bashkim Zendeli
Lawrence Technological University

I also wish to express my sincerest gratitude to the following individuals who were kind enough to contribute applied problems to this edition:

Jeff Dodd, Professor, Department of Mathematical Sciences, Jacksonville State University, Jacksonville, Alabama

Pierre Gharghouri, Professor Emeritus, Department of Mathematics, Ryerson University, Toronto, Canada

Jean-Paul Pascal, Associate Professor, Department of Mathematics, Ryerson University, Toronto, Canada

Rick Wicklin, PhD, Senior Researcher in Computational Statistics, SAS Institute Inc., Cary, North Carolina

Although many eyes have scanned the thousands of symbols and hundreds of equations in the text, it is a surety that some errors persist. I apologize for this in advance and I would certainly appreciate hearing about any errors that you may find, either in the text proper or in the supplemental manuals. In order to expedite their correction, contact my editor at:

> LPagluica@jblearning.com

Dennis G. Zill

1. Introduction to Differential Equations
2. First-Order Differential Equations
3. Higher-Order Differential Equations
4. The Laplace Transform
5. Series Solutions of Linear Differential Equations
6. Numerical Solutions of Ordinary Differential Equations

CHAPTER

1

Introduction to Differential Equations

The purpose of this short chapter is twofold: to introduce the basic terminology of differential equations and to briefly examine how differential equations arise in an attempt to describe or model physical phenomena in mathematical terms.

CHAPTER CONTENTS

1.1 Definitions and Terminology

1.2 Initial-Value Problems
1.3 Differential Equations as Mathematical Models

Chapter 1 in Review

1.1 Definitions and Terminology

INTRODUCTION The words differential and equation certainly suggest solving some kind of equation that contains derivatives. But before you start solving anything, you must learn some of the basic defintions and terminology of the subject.

A Definition The derivative $d y / d x$ of a function $y=\phi(x)$ is itself another function $\phi^{\prime}(x)$ found by an appropriate rule. For example, the function $y=e^{0.1 x^{2}}$ is differentiable on the interval $(-\infty, \infty)$, and its derivative is $d y / d x=0.2 x e^{0.1 x^{2}}$. If we replace $e^{0.1 x^{2}}$ in the last equation by the symbol y, we obtain

$$
\begin{equation*}
\frac{d y}{d x}=0.2 x y . \tag{1}
\end{equation*}
$$

Now imagine that a friend of yours simply hands you the differential equation in (1), and that you have no idea how it was constructed. Your friend asks: "What is the function represented by the symbol y ?" You are now face-to-face with one of the basic problems in a course in differential equations:

How do you solve such an equation for the unknown function $y=\phi(x)$?
The problem is loosely equivalent to the familiar reverse problem of differential calculus: Given a derivative, find an antiderivative.

Before proceeding any further, let us give a more precise definition of the concept of a differential equation.

Definition 1.1.1 Differential Equation

An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation (DE).

In order to talk about them, we will classify a differential equation by type, order, and linearity.

Classification by Type If a differential equation contains only ordinary derivatives of one or more functions with respect to a single independent variable it is said to be an ordinary differential equation (ODE). An equation involving only partial derivatives of one or more functions of two or more independent variables is called a partial differential equation (PDE). Our first example illustrates several of each type of differential equation.

eXAMPLE 1 Types of Differential Equations

(a) The equations

$$
\frac{d y}{d x}+6 y=e^{-x}, \quad \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-12 y=0, \quad \begin{gather*}
\text { an ODE can contain more } \\
\text { than one dependent variable } \\
\downarrow \\
\downarrow \tag{2}
\end{gather*}
$$

are examples of ordinary differential equations.
(b) The equations

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0, \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial u}{\partial t}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} \tag{3}
\end{equation*}
$$

are examples of partial differential equations. Notice in the third equation that there are two dependent variables and two independent variables in the PDE. This indicates that u and v must be functions of two or more independent variables.

Notation Throughout this text, ordinary derivatives will be written using either the Leibniz notation $d y / d x, d^{2} y / d x^{2}, d^{3} y / d x^{3}, \ldots$, or the prime notation $y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}, \ldots$ Using the latter notation, the first two differential equations in (2) can be written a little more compactly as $y^{\prime}+6 y=e^{-x}$ and $y^{\prime \prime}+y^{\prime}-12 y=0$, respectively. Actually, the prime notation is used to denote only the first three derivatives; the fourth derivative is written $y^{(4)}$ instead of $y^{\prime \prime \prime \prime}$. In general, the nth derivative is $d^{n} y / d x^{n}$ or $y^{(n)}$. Although less convenient to write and to typeset, the Leibniz notation has an advantage over the prime notation in that it clearly displays both the dependent and independent variables. For example, in the differential equation $d^{2} x / d t^{2}+16 x=0$, it is immediately seen that the symbol x now represents a dependent variable, whereas the independent variable is t. You should also be aware that in physical sciences and engineering, Newton's dot notation (derogatively referred to by some as the "flyspeck" notation) is sometimes used to denote derivatives with respect to time t. Thus the differential equation $d^{2} s / d t^{2}=-32$ becomes $\ddot{s}=-32$. Partial derivatives are often denoted by a subscript notation indicating the independent variables. For example, the first and second equations in (3) can be written, in turn, as $u_{x x}+u_{y y}=0$ and $u_{x x}=u_{t t}-u_{t}$.

Classification by Order The order of a differential equation (ODE or PDE) is the order of the highest derivative in the equation.

EXAMPLE 2 Order of a Differential Equation

The differential equations

$$
\begin{array}{lc}
\underset{\substack{\text { highest order } \\
\downarrow}}{\frac{d^{2} y}{d x^{2}}+5\left(\frac{d y}{d x}\right)^{3}-4 y=e^{x},} & \begin{array}{c}
\text { highest order } \\
\downarrow \\
\partial x^{4}
\end{array} \frac{\partial^{4} u}{\partial t^{2}}=0
\end{array}
$$

are examples of a second-order ordinary differential equation and a fourth-order partial differential equation, respectively.

A first-order ordinary differential equation is sometimes written in the differential form

$$
M(x, y) d x+N(x, y) d y=0
$$

EXAMPLE 3 Differential Form of a First-Order ODE

If we assume that y is the dependent variable in a first-order ODE, then recall from calculus that the differential $d y$ is defined to be $d y=y^{\prime} d x$.
(a) By dividing by the differential $d x$ an alternative form of the equation $(y-x) d x+$ $4 x d y=0$ is given by

$$
y-x+4 x \frac{d y}{d x}=0 \quad \text { or equivalently } \quad 4 x \frac{d y}{d x}+y=x
$$

(b) By multiplying the differential equation

$$
6 x y \frac{d y}{d x}+x^{2}+y^{2}=0
$$

by $d x$ we see that the equation has the alternative differential form

$$
\left(x^{2}+y^{2}\right) d x+6 x y d y=0
$$

In symbols, we can express an n th-order ordinary differential equation in one dependent variable by the general form

$$
\begin{equation*}
F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0 \tag{4}
\end{equation*}
$$

where F is a real-valued function of $n+2$ variables: $x, y, y^{\prime}, \ldots, y^{(n)}$. For both practical and theoretical reasons, we shall also make the assumption hereafter that it is possible to solve an
ordinary differential equation in the form (4) uniquely for the highest derivative $y^{(n)}$ in terms of the remaining $n+1$ variables. The differential equation

$$
\begin{equation*}
\frac{d^{n} y}{d x^{n}}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{5}
\end{equation*}
$$

where f is a real-valued continuous function, is referred to as the normal form of (4). Thus, when it suits our purposes, we shall use the normal forms

$$
\frac{d y}{d x}=f(x, y) \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=f\left(x, y, y^{\prime}\right)
$$

to represent general first- and second-order ordinary differential equations.

EXAMPLE 4 Normal Form of an ODE

(a) By solving for the derivative $d y / d x$ the normal form of the first-order differential equation

$$
4 x \frac{d y}{d x}+y=x \quad \text { is } \quad \frac{d y}{d x}=\frac{x-y}{4 x}
$$

(b) By solving for the derivative $y^{\prime \prime}$ the normal form of the second-order differential equation

$$
y^{\prime \prime}-y^{\prime}+6 y=0 \quad \text { is } \quad y^{\prime \prime}=y^{\prime}-6 y .
$$

Classification by Linearity An n th-order ordinary differential equation (4) is said to be linear in the variable y if F is linear in $y, y^{\prime}, \ldots, y^{(n)}$. This means that an n th-order ODE is linear when (4) is $a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y-g(x)=0$ or

$$
\begin{equation*}
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{6}
\end{equation*}
$$

Two important special cases of (6) are linear first-order ($n=1$) and linear second-order ($n=2$) ODEs.

$$
\begin{equation*}
a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \quad \text { and } \quad a_{2}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x) \tag{7}
\end{equation*}
$$

In the additive combination on the left-hand side of (6) we see that the characteristic two properties of a linear ODE are

- The dependent variable y and all its derivatives $y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}$ are of the first degree; that is, the power of each term involving y is 1 .
- The coefficients $a_{0}, a_{1}, \ldots, a_{n}$ of $y, y^{\prime}, \ldots, y^{(n)}$ depend at most on the independent variable x.

A nonlinear ordinary differential equation is simply one that is not linear. If the coefficients of $y, y^{\prime}, \ldots, y^{(n)}$ contain the dependent variable y or its derivatives or if powers of y, y^{\prime}, \ldots, $y^{(n)}$, such as $\left(y^{\prime}\right)^{2}$, appear in the equation, then the DE is nonlinear. Also, nonlinear functions of the dependent variable or its derivatives, such as $\sin y$ or $e^{y^{\prime}}$ cannot appear in a linear equation.

EXAMPLE 5 Linear and Nonlinear Differential Equations

(a) The equations

$$
(y-x) d x+4 x d y=0, \quad y^{\prime \prime}-2 y^{\prime}+y=0, \quad x^{3} \frac{d^{3} y}{d x^{3}}+3 x \frac{d y}{d x}-5 y=e^{x}
$$

are, in turn, examples of linear first-, second-, and third-order ordinary differential equations. We have just demonstrated in part (a) of Example 3 that the first equation is linear in y by writing it in the alternative form $4 x y^{\prime}+y=x$.
(b) The equations

$$
\begin{array}{ccc}
\text { nonlinear term: } & \text { nonlinear term: } & \text { nonlinear term: } \\
\text { coefficient depends on } y & \begin{array}{c}
\text { nonlinear function of } y \\
\downarrow
\end{array} & \begin{array}{c}
\text { power not } 1
\end{array} \\
\downarrow & \downarrow
\end{array}
$$

are examples of nonlinear first-, second-, and fourth-order ordinary differential equations, respectively.

Solution As stated before, one of our goals in this course is to solve-or find solutions of-differential equations. The concept of a solution of an ordinary differential equation is defined next.

Definition 1.1.2 Solution of an ODE

Any function ϕ, defined on an interval I and possessing at least n derivatives that are continuous on I, which when substituted into an n th-order ordinary differential equation reduces the equation to an identity, is said to be a solution of the equation on the interval.

In other words, a solution of an n th-order ordinary differential equation (4) is a function ϕ that possesses at least n derivatives and

$$
F\left(x, \phi(x), \phi^{\prime}(x), \ldots, \phi^{(n)}(x)\right)=0 \text { for all } x \text { in } I
$$

We say that ϕ satisfies the differential equation on I. For our purposes, we shall also assume that a solution ϕ is a real-valued function. In our initial discussion we have already seen that $y=e^{0.1 x^{2}}$ is a solution of $d y / d x=0.2 x y$ on the interval $(-\infty, \infty)$.

Occasionally it will be convenient to denote a solution by the alternative symbol $y(x)$.
Interval of Definition You can't think solution of an ordinary differential equation without simultaneously thinking interval. The interval I in Definition 1.1.2 is variously called the interval of definition, the interval of validity, or the domain of the solution and can be an open interval (a, b), a closed interval $[a, b]$, an infinite interval (a, ∞), and so on.

EXAMPLE 6 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on the interval $(-\infty, \infty)$.
(a) $\frac{d y}{d x}=x y^{1 / 2} ; \quad y=\frac{1}{16} x^{4}$
(b) $y^{\prime \prime}-2 y^{\prime}+y=0 ; \quad y=x e^{x}$

SOLUTION One way of verifying that the given function is a solution is to see, after substituting, whether each side of the equation is the same for every x in the interval $(-\infty, \infty)$.

$$
\begin{aligned}
& \text { (a) From left-hand side: } \frac{d y}{d x}=4 \cdot \frac{x^{3}}{16}=\frac{x^{3}}{4} \\
& \text { right-hand side: } x y^{1 / 2}=x \cdot\left(\frac{x^{4}}{16}\right)^{1 / 2}=x \cdot \frac{x^{2}}{4}=\frac{x^{3}}{4}
\end{aligned}
$$

we see that each side of the equation is the same for every real number x. Note that $y^{1 / 2}=\frac{1}{4} x^{2}$ is, by definition, the nonnegative square root of $\frac{1}{16} x^{4}$.
(b) From the derivatives $y^{\prime}=x e^{x}+e^{x}$ and $y^{\prime \prime}=x e^{x}+2 e^{x}$ we have for every real number x,

$$
\begin{aligned}
& \text { left-hand side: } y^{\prime \prime}-2 y^{\prime}+y=\left(x e^{x}+2 e^{x}\right)-2\left(x e^{x}+e^{x}\right)+x e^{x}=0 \\
& \text { right-hand side: } 0 .
\end{aligned}
$$

Note, too, that in Example 6 each differential equation possesses the constant solution $y=0$, defined on $(-\infty, \infty)$. A solution of a differential equation that is identically zero on an interval I is said to be a trivial solution.

FIGURE 1.1.1 Example 7 illustrates the difference between the function $y=1 / x$ and the solution $y=1 / x$

Solution Curve The graph of a solution ϕ of an ODE is called a solution curve. Since ϕ is a differentiable function, it is continuous on its interval I of definition. Thus there may be a difference between the graph of the function ϕ and the graph of the solution ϕ. Put another way, the domain of the function ϕ does not need to be the same as the interval I of definition (or domain) of the solution ϕ.

EXAMPLE 7
 Function vs. Solution

(a) Considered simply as a function, the domain of $y=1 / x$ is the set of all real numbers x except 0 . When we graph $y=1 / x$, we plot points in the $x y$-plane corresponding to a judicious sampling of numbers taken from its domain. The rational function $y=1 / x$ is discontinuous at 0 , and its graph, in a neighborhood of the origin, is given in FIGURE 1.1.1(a). The function $y=1 / x$ is not differentiable at $x=0$ since the y-axis (whose equation is $x=0$) is a vertical asymptote of the graph.
(b) Now $y=1 / x$ is also a solution of the linear first-order differential equation $x y^{\prime}+y=0$ (verify). But when we say $y=1 / x$ is a solution of this DE we mean it is a function defined on an interval I on which it is differentiable and satisfies the equation. In other words, $y=1 / x$ is a solution of the DE on any interval not containing 0 , such as $(-3,-1),\left(\frac{1}{2}, 10\right)$, $(-\infty, 0)$, or $(0, \infty)$. Because the solution curves defined by $y=1 / x$ on the intervals $(-3,-1)$ and on $\left(\frac{1}{2}, 10\right)$ are simply segments or pieces of the solution curves defined by $y=1 / x$ on $(-\infty, 0)$ and $(0, \infty)$, respectively, it makes sense to take the interval I to be as large as possible. Thus we would take I to be either $(-\infty, 0)$ or $(0, \infty)$. The solution curve on the interval $(0, \infty)$ is shown in Figure 1.1.1(b).

Explicit and Implicit Solutions You should be familiar with the terms explicit and implicit functions from your study of calculus. A solution in which the dependent variable is expressed solely in terms of the independent variable and constants is said to be an explicit solution. For our purposes, let us think of an explicit solution as an explicit formula $y=\phi(x)$ that we can manipulate, evaluate, and differentiate using the standard rules. We have just seen in the last two examples that $y=\frac{1}{16} x^{4}, y=x e^{x}$, and $y=1 / x$ are, in turn, explicit solutions of $d y / d x=x y^{1 / 2}$, $y^{\prime \prime}-2 y^{\prime}+y=0$, and $x y^{\prime}+y=0$. Moreover, the trivial solution $y=0$ is an explicit solution of all three equations. We shall see when we get down to the business of actually solving some ordinary differential equations that methods of solution do not always lead directly to an explicit solution $y=\phi(x)$. This is particularly true when attempting to solve nonlinear first-order differential equations. Often we have to be content with a relation or expression $G(x, y)=0$ that defines a solution ϕ implicitly.

Definition 1.1.3 Implicit Solution of an ODE

A relation $G(x, y)=0$ is said to be an implicit solution of an ordinary differential equation (4) on an interval I provided there exists at least one function ϕ that satisfies the relation as well as the differential equation on I.

It is beyond the scope of this course to investigate the conditions under which a relation $G(x, y)=0$ defines a differentiable function ϕ. So we shall assume that if the formal implementation of a method of solution leads to a relation $G(x, y)=0$, then there exists at least one function ϕ that satisfies both the relation (that is, $G(x, \phi(x))=0$) and the differential equation on an interval I. If the implicit solution $G(x, y)=0$ is fairly simple, we may be able to solve for y in terms of x and obtain one or more explicit solutions. See (iv) in the Remarks.

EXAMPLE 8 Verification of an Implicit Solution

The relation $x^{2}+y^{2}=25$ is an implicit solution of the nonlinear differential equation

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{x}{y} \tag{8}
\end{equation*}
$$

on the interval defined by $-5<x<5$. By implicit differentiation we obtain

$$
\begin{equation*}
\frac{d}{d x} x^{2}+\frac{d}{d x} y^{2}=\frac{d}{d x} 25 \quad \text { or } \quad 2 x+2 y \frac{d y}{d x}=0 \tag{9}
\end{equation*}
$$

Solving the last equation in (9) for the symbol $d y / d x$ gives (8). Moreover, solving $x^{2}+y^{2}=25$ for y in terms of x yields $y= \pm \sqrt{25-x^{2}}$. The two functions $y=\phi_{1}(x)=\sqrt{25-x^{2}}$ and $y=\phi_{2}(x)=-\sqrt{25-x^{2}}$ satisfy the relation (that is, $x^{2}+\phi_{1}^{2}=25$ and $x^{2}+\phi_{2}^{2}=25$) and are explicit solutions defined on the interval $(-5,5)$. The solution curves given in FIGURE 1.1.2(b) and 1.1.2(c) are segments of the graph of the implicit solution in Figure 1.1.2(a).

FIGURE 1.1.2 An implicit solution and two explicit solutions in Example 8

Any relation of the form $x^{2}+y^{2}-c=0$ formally satisfies (8) for any constant c. However, it is understood that the relation should always make sense in the real number system; thus, for example, we cannot say that $x^{2}+y^{2}+25=0$ is an implicit solution of the equation. Why not?

Because the distinction between an explicit solution and an implicit solution should be intuitively clear, we will not belabor the issue by always saying, "Here is an explicit (implicit) solution."

Families of Solutions The study of differential equations is similar to that of integral calculus. When evaluating an antiderivative or indefinite integral in calculus, we use a single constant c of integration. Analogously, when solving a first-order differential equation $F\left(x, y, y^{\prime}\right)=0$, we usually obtain a solution containing a single arbitrary constant or parameter c. A solution containing an arbitrary constant represents a set $G(x, y, c)=0$ of solutions called a one-parameter family of solutions. When solving an n th-order differential equation $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$, we seek an \boldsymbol{n}-parameter family of solutions $G\left(x, y, c_{1}, c_{2}, \ldots, c_{n}\right)=0$. This means that a single differential equation can possess an infinite number of solutions corresponding to the unlimited number of choices for the parameter(s). A solution of a differential equation that is free of arbitrary parameters is called a particular solution. For example, the one-parameter family $y=c x-x \cos x$ is an explicit solution of the linear first-order equation $x y^{\prime}-y=x^{2} \sin x$ on the interval $(-\infty, \infty)$ (verify). FIGURE 1.1.3, obtained using graphing software, shows the graphs of some of the solutions in this family. The solution $y=-x \cos x$, the red curve in the figure, is a particular solution corresponding to $c=0$. Similarly, on the interval $(-\infty, \infty), y=c_{1} e^{x}+c_{2} x e^{x}$ is a two-parameter family of solutions (verify) of the linear second-order equation $y^{\prime \prime}-2 y^{\prime}+y=0$ in part (b) of Example 6. Some particular solutions of the equation are the trivial solution $y=0\left(c_{1}=c_{2}=0\right), y=x e^{x}\left(c_{1}=0, c_{2}=1\right), y=5 e^{x}-2 x e^{x}\left(c_{1}=5, c_{2}=-2\right)$, and so on.

In all the preceding examples, we have used x and y to denote the independent and dependent variables, respectively. But you should become accustomed to seeing and working with other symbols to denote these variables. For example, we could denote the independent variable by t and the dependent variable by x.

EXAMPLE 9 Using Different Symbols

The functions $x=c_{1} \cos 4 t$ and $x=c_{2} \sin 4 t$, where c_{1} and c_{2} are arbitrary constants or parameters, are both solutions of the linear differential equation

$$
x^{\prime \prime}+16 x=0
$$

